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Statistical Signal Analysis Using Wavelets 
Final Report 

Executive Summary 

This report discusses the research on "Statistical Signal Analysis Using Wavelets" 
performed by the Statistical Sciences Division of MathSoft, Inc. for contract N00014- 
93-C-0106 with the Office of Naval Research. The overall goals of the research are: 

• Application of wavelets and related transforms to data analysis. 

• Using wavelets as the basis for statistical problems, such as signal extraction, 
spectral density estimation, isotonic regression, and classification. 

• Research into new transforms and algorithms tailored to meet the needs of 
data analysis and statistical estimation. 

The first year of research focused on six specific areas: 

1. Applications of wavelets to data of interest to the Navy; 

2. Noise removal using wavelets, wavelet packets, and cosine packets; 

3. Investigation into new wavelet transforms which are outlier resistant and edge 
preserving; 

4. Development of a framework and tools for the "wavelet approach" towards 
analysis of signals, images, and other data; 

5. Exploration of the use of wavelets as a dimension reduction tool for statistical 
analysis of very large data sets; 

6. Development of algorithms for wavelet analysis. 

Future research will extend the results obtained in these areas. In addition, research 
in the following areas will be pursued, time permitting: analysis of wavelet coeffi- 
cients for fractional Brownian motion, and simulation, bootstrapping, and modeling 
of fron-Gaussian processes.  -——rr- "~ 
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1 INTRODUCTION 

In the past few years, wavel ts have evo&ved from an interesting mathematical dis- 
covery to a valuable technique with a wide variety of applications. Wavelet research 
has synthesized a number of related ideas into a coherent set of tools and method- 
ology for analysis of signals, images and other technical data. Research is leading 
to new wavelet-like methods, such as wavelet packets or outlier-resistant wavelets. 
The development of software toolkits are bringing these methods to the hands of 
scientists and engineers, including those without wavelet expertise. 

Our research for ONR contract N00014-93-C-0106 has focused on: 

• Application of wavelets and related transforms to data analysis. 

Using wavelets as the basis for statistical problems, such as signal extraction, 
spectral density estimation, isotonic regression, and classification. 

Research into new transforms and algorithms tailored to meet the needs of 
data analysis and statistical estimation. 

Our research in each of these areas is guided by data analysis of time series of interest 
to the Navy. 

In section 2, we summarize the main results from the first year of research. 
Section 3 gives a list of all papers and talks produced during the year. Future 
research plans are discussed in section 4. We also include an appendix with plots 
giving examples and illustrations. 

2 SUMMARY OF RESULTS 

We are pursuing research in six related areas: 

1. Applications of wavelets to data of interest to the Navy; 

2. Noise removal using wavelets, wavelet packets, and cosine packets; 

3. Investigation into new wavelet transforms which are outlier resistant and edge 
preserving; 

4. Development of a framework and tools for the "wavelet approach" towards 
analysis of signals, images, and other data; 

5. Exploration of the use of wavelets as a dimension reduction tool for statistical 
analysis of very large data sets; 

6. Development of algorithms for wavelet analysis. 

These are discussed in more detail below. 



2.1 DATA ANALYSIS WITH WAVELETS 

Applications of interest to the Navy include: 

• Robust wavelet de-noising of radar glint noise. 

• Time-frequency analysis of underwater acoustic signals. 

• Wavelet compression applied to a number of signals and images. 

• Fast classification of transients in low frequency sinusoidal data. 

Some of these applications are discussed in more detail in the following sections. 
We are currently writing up a series of reports on applications of wavelets to 

data analysis problems [BG95c, BG95d, BG95e]. Our analysis of Navy data is also 
closely related to our work in developing the "wavelet approach" to data analysis: 
see section 2.4. 

2.2 NOISE REMOVAL WITH WAVELETS 

In the past three years, wavelet de-noising research has received intense activity since 
the initial development by Donoho and Johstone. This research includes methods 
for the following topics. 

Signal recovery: The radar glint noise example is an example of signal recovery from 
noisy data. The underlying model for our data y,- is yi = /,• + e; where /,• is 
the unknown signal or image and et- is noise. Wavelets provide a way to obtain 
an estimate fi while making a minimum of assumptions about the nature of 
fi and 6{. Other applications have been explored by [Bri94, CM92, DJ92a, 
DJ92b, MH92, Don93, MZ93, cA94, HK94, IK93, PBBA94, RBL94, SS94, 
TH94, Tew94]. 

Inverse Problems (Parameter Estimation): Many interesting problems having to do 
with noisy data involve indirect measurements ?/,■ = (Kf)(ti)+6i where we want 
to estimate / (so called inverse problems). Examples of the transform K in- 
clude the Fourier transformation (magnetic resonance imaging), the Laplace 
transformation (fluorescence spectroscopy), the Radon transformation (tomog- 
raphy problem) and various deconvolution problems (gravity anomalies, in- 

' frared spectroscopy, extragalactic astronomy). See [Don93, Wic94, BFCLB94, 
MW94] for applications of wavelets to inverse problems. 

Signal Detection and Classification: Closely related to the problem of signal recov- 
ery is signal detection and classification. The aim is to identify a particular 
signal from background noise and other signals. Wavelet based signal detection 
has been explored by [FM92, LKW92, KDP92, YRKS92, Car94, DMWJ94, 
LAJ94]. 



Image and Image Array Reconstruction and Enhancement: Wavelet de-noising method- 
ology can be extended to two and higher dimensional problems in a straight- 
forward manner. Some applications in which wavelets have been used to clean 
noisy images are given in [DJL92, SFAH92, MH92, Don93, WRM+94]. 

Density estimation: Wavelets can be used to recover probability densities [JKP92] 
and spectral densities [Mou93, Gao93b] from noisy data (see section 2.2.5). 

In year two research, we have studied 

1. Wavelet de-noising using non-decimated transforms. 

2. Variance estimation for wavelet de-noising. 

3. Selecting the threshold using cross-validation. 

4. Applications of wavelets to isotonic regression. 

5. Spectral density estimation using wavelets. 

6. Diagnostics for assessing wavelet de-noising. 

This are discussed in more detail below. 

2.2.1    Wavelet De-Noising using Non-Decimated Transforms 

The non-decimated discrete wavelet transform is a non-orthogonal variant of the 
classical DWT. With the non-decimated DWT, starting with n sample signal val- 
ues you end up with (J + 1) x n coefficients. Unlike the classical DWT, which has 
fewer coefficients at coarser scales, each scale for the non-decimated DWT has n 
coefficients. The non-decimated DWT is over-sampled at coarse scales. This over- 
sampling can enhance the visual displays and lead to advantages in certain problems, 
including better spatial resolution, less loss of information, and translation invari- 
ance with respect to the signal. Mallat and co-workers used the non-decimated 
DWT for detecting singularities and de-noising signals [MH92, MZ92]. 

Instead of using an orthogonal discrete wavelet transform, the Donoho and John- 
stone WaveShrink algorithm can be applied to the non-decimated wavelet transform. 
Figure 1 illustrates this using a noisy sinusoid with a discontinuity. The WaveShrink 
estimate based on the orthogonal haar wavelet transform is very blocky, correspond- 
ing to the discontinuous nature of the haar wavelet. By contrast, the WaveShrink 
estimate based on based on the non-decimated haar wavelet estimate is smooth, 
due to the "spatial averaging" in the reconstruction. There is, however, a cost to 
smoothness: the non-decimated estimate blurs the discontinuities at the two jumps. 



Preliminary results indicate that de-noising with non-decimated wavelets offers 
significant improvements over the original WaveShrink algorithm. We plan to con- 
tinue our research into de-noising with non-decimated wavelets, through both an 
empirical study and the development of software for use by Navy researchers at the 
China Lake facility. 

2.2.2 Variance Estimation for Wavelet De-Noising 

Based on ideas proposed by David Brillinger [Bri94], we have developed a gen- 
eral method for estimating the variance of WaveShrink estimate. Let ft be the 
WaveShrink estimate. Since the wavelet transform is linear and the wavelet coeffi- 
cients Wj^ are approximately uncorrelated, asymptotic theory implies that 

VarC/^EVarfe) (1) 

where 
Wj,k = Sx(wjik)wjtk\\^k(t)\\ (2) 

In figure 2, we apply this formula to compute a confidence interval for the flow 
of the Nile River. The top plot is the annual Nile River flow at Aswan from 1875 to 
1970, the middle plot is the WaveShrink using Haar wavelet with an approximated 
95% confidence band and the bottom plot is the WaveShrink using bsl.3 wavelet 
with an approximated 95% confidence band. The confidence interval clearly shows 
a significant drop around the time of the building of the Aswan dam in 1899-1902. 

To make (1) more generally useful, we plan to investigate several extensions. 
These include the development of a fast algorithm to compute ||^>J,A:(£)|| 

and use 0I* 
the bootstrap to get a more realistic estimate of Va,r(wjtk). 

2.2.3 Cross Validation Selection of the Threshold 

Initial simulations have shown that the cross validation technique is promising in 
selecting thresholds in the WaveShrink algorithm. The basic idea is: 

[1] for each set of thresholds, apply WaveShrink to part of the data and compute 
the mean-square error between the WaveShrink estimate and the other part 
of the data; 

[2] find the set of thresholds which minimizes the mean-square errors. 

In figure 3, we apply cross validation to select the threshold for WaveShrink 
applied to the synthetic "doppler" signal corrupted by Gaussian noise. The cross- 
validation threshold is compared with the "universal" threshold, "minimax" thresh- 
old and the "optimal" threshold (the threshold minimizes the mean-square error 



(MSE) between WaveShrink estimate and the true signal, this is only possible for 
simulation). Cross validation consistently leads to lower MSE than the "universal" 
and "minimax" thresholds for this example. 

In future research, we will to explore using non-linear optimization techniques 
to estimate multiple thresholds with cross validation. We will also explore other 
cross validation methods, such as using decimation by powers of 2J instead of just 
decimation by 2 (initial investigations have not shown this to be crucial, but we 
suspect this may not be the case for "real world" problems). We will also develop a 
theoretical justification for cross-validation in the WaveSrhink context. 

2.2.4 Wavelets and Isotonic Regression 

Consider the isotonic regression model: 

Hi = /(*0 + zi 

where / is a decreasing function and {z;} are assumed to be a stationary Gaussian 
process with mean zero and variance a2. We propose a simple thresholding procedure 
based on the fact that the wavelet coefficients for /, under Haar wavelet, are non- 
negative. We show that our estimator is competitive with the Grenander estimator 
both theoretically and numerically (in the sense of mean-square-error). Figure 4 
displays a synthetic decreasing curve (top left), the same curve plus Gaussian white 
noise (top right), the Grenander estimate (bottom left) and the wavelet estimate 
(bottom right). The wavelet estimate has lower mean square error and does a better 
job of preserving the jumps. 

Details of the wavelet estimation procedure are given in [Gao95b]: see section 3. 
A limitation of the current procedure is the restriction to the use of the Haar 

wavelet, which is the only wavelet which preserves the monotonicity. We will inves- 
tigate the existence of a new class of smooth wavelets which preserve monotonicity. 

2.2.5 Wavelet Based Spectral Density Estimation 

A technique for spectral density estimation based on wavelet decomposition of the 
periodogram and reconstruction of the spectrum was developed by Hong-Ye Gao 
[Gao93b, Gao93a]. This technique is especially valuable for processes with non- 
smeoth features in the spectrum, such as sharp peaks. 

A simulated autoregressive series is displayed in figure 5. This series has sharp 
peaks in its spectral density function. Figure 6 compares wavelet shrinkage estima- 
tion applied to this series to a more traditional non-parametric spectral estimator 
based on a kernel smoother. The traditional nonparametric estimator based on a 
triangular spectral smoothing window tends to oversmooth the peaks. Using shorter 
span smoothing windows would better preserve the peaks, but would result an un- 
necessarily rough estimate elsewhere.   The WaveShrink estimator is equivalent to 



using a variable bandwidth smoother. It preserves the peaks while producing a 
smooth estimate elsewhere. 

A paper describing Dr. Gao's work has been accepted by the Journal of Time 
Series Analysis pending revisions [Gao95a] (see section 3). These revisions are being 
done through the support of this contract. 

2.2.6    Diagnostics for Assessing Wavelet De-Noising 

The theory for WaveShrink is based on the Gaussian white noise model. When this 
model is inappropriate - e.g., when the data has outliers - then the "traditional" 
WaveShrink estimators may be inappropriate. 

To help assess the WaveShrink fit, we have explored the use of simple diagnostics 
plots. Figure 7 displays a synthetic bumps signal, the bumps signal corrupted by 
Gaussian noise, and the WaveShrink estimate of the bumps signal. How should we 
assess the WaveShrink estimate? Figure 8 gives four "views" of the WaveShrink 
estimate for the bumps signal: (1) The decomposition of the data into signal plus 
noise, (2) Boxplots of the DWT coefficients for the original data with the WaveShrink 
thresholds superimposed as horizontal lines, (3) The DWT of the signal, and (4) 
A barplot showing the decomposition of the energy of the data into the energy 
attributable to signal and residual energy. 

We can also use plots to examine the residuals from the figure. Figure 9 dis- 
plays a series of views for the residuals from the WaveShrink estimate of the bumps 
signal. The diagnostic plots indicate that the peaks are oversmoothed. As a re- 
sult, the distribution of the residual component is skewed toward high values. The 
oversmoothing also leads to significant autocorrelation in the residuals. 

We will continue to explore the use of visual diagnostics to help guide the user 
when to use WaveShrink, and how to improve the WaveShrink fit. 

2.3    ROBUST AND NONLINEAR WAVELETS 

The aim of this research is to investigate wavelet methods which are robust towards 
outliers. This line of research was motivated by problems encountered in application 
of wavelets to Navy data sets. It promises to be of considerable practical importance, 
and represents an exciting area of innovative research. 

•Some outlier resistant and edge preserving wavelets we developed include: 

1. Wavelets with robust smoother/cleaner. The usual wavelet transform is com- 
bined with a robust smoother/cleaner to remove outliers. 

2. Wavelet based minimum entropy segmentation. The wavelet transform is used 
to segment a noisy signal by successively identifying and removing edges and 
other discontinuities. 



These are discussed in more detail below. 
Research in this area is still continuing: see sections 3.6 and 4. 

2.3.1    Wavelets with Robust Smoother/Cleaner 

The presence of outliers in data causes problems in traditional time series analysis 
techniques. Outliers can seriously distort the autocorrelation function, partial auto- 
correlation function, spectral density function, model identification, and parameter 
estimates for models. Outliers can also cause problems with methods based on the 
wavelet decomposition. Wavelets are a linear transformation of the data, and hence, 
outliers have unbounded influence on the wavelet coefficients. 

The goal of robust smoother/cleaner wavelets is to produce a fast wavelet decom- 
position which is robust towards outliers. Smoother-cleaner wavelets behave like the 
classical X2 wavelet transform for Gaussian signals, but prevent outliers and outlier 
patches from leaking into the wavelet coefficients at coarse levels (like L\ wavelets). 
However, in contrast to the L\ wavelets, algorithm is very fast with computational 
complexity 0(n). 

The basic idea of robust smoother/cleaner wavelets is simple: the smooth coef- 
ficients are preprocessed with a fast and robust smoother/cleaner. The procedure 
is illustrated in figure 10. As usual, we start with a set of wavelet coefficients 5(0). 
Then, for each multiresolution level, the signal is decomposed into three components: 

1. A set of robust residuals R(£ — 1), given by 

R(£ -1) = SX (S(£ - 1) - S{£ - 1)) 

where <!>A is a thresholder function and S(£ — 1) is a robust smooth of S(£ — 1) 
(e.g., running medians of 5). The threshold A is chosen so that most of the 
robust residuals are zero. 

2. The smooth wavelet coefficients S(£) obtained by applying the usual low- 
pass/decimation wavelet filter H to the cleaned smooth coefficients U(£— 1) = 
S(£-l)-R(£-l). 

3. The detail wavelet coefficients D(£) obtained by applying the usual high- 
'   pass/decimation wavelet filter G to U(£ — 1). 

The smoother/cleaner wavelet decomposition can be used for de-noising signals. 
As an example, we apply it to the radar glint noise signal. The original noisy signal, 
which is the angle of the target in degrees, is displayed in Figure 11(a) The true 
signal is a low-frequency oscillation about 0°. The signal contains a number of glint 
spikes, causing the apparent signal to be different from the true signal by as much 
as 150°. 

9 



Figure 11(b) compares denoising with linear shrinkage of wavelets (dashed line) 
to denoising with WaveShrink combined with robust smoother-cleaner wavelets 
(solid line). The linear shrinkage is based on annihilating all detail coefficients of the 
classical wavelet transform at levels t = 1,2,3,4. While linear shrinkage estimate 
is smooth, it is still somewhat sensitive to the glint spikes. By contrast, the clean 
and repeat procedure is quite resistant to the glint spikes but effectively tracks the 
sudden changes in the series. 

This work led to publication of two papers [BDGM94a, BDGM94b]: see section 3. 
Refer to these papers for details about the smoother-cleaner wavelets. 

2.3.2    Segmented Wavelet Bases 

Another way to generalize wavelet bases is through segmentation. Segmented wavelet 
bases are obtained by piecing together different wavelet bases over time and space. 
Segmented bases are particularly well suited for adaptation to discontinuities (edges, 
cusps, etc.) and more general change points (e.g., changes in the stochastic prop- 
erties of the signal). The segmentation is done by optimizing some criterion (e.g., 
entropy) in a similar manner as in the search for a "best basis". 

In work supported by this contract, the paper "On Minimum Entropy Segmen- 
tation" will appear in a future volume of Wavelet Analysis and Its Applications, 
edited by Charles Chui [Don95] (see section 3). 

2.4    A FRAMEWORK FOR THE "WAVELET APPROACH" 

In the late 1960's and early 1970's, John Tukey developed and popularized a phi- 
losophy for analyzing data called "exploratory data analysis" [Tuk75]. Since that 
time, this philosophy has expanded and matured into a complete collection of tools 
and techniques for understanding and extracting information from data. Our belief 
is that wavelet analysis will follow a similar evolution. What started as an interest- 
ing mathematical breakthrough has evolved into a coherent new way of analyzing 
signals, images, and other data. 

Many of the ideas behind wavelets are drawn from other domains, such as sub- 
band filtering, approximation theory, signal processing, and image processing. What 
is significant about wavelets is the development of a coherent framework, which pro- 
vides a new paradigm for analyzing data. We are now at the stage where it is 
possible to formulate this framework in an organized manner which is accessible to 
the broader community of scientists, engineers, and researchers, and not just wavelet 
experts. 

One aspect of our research is to develop this framework, fueling the transition of 
wavelets from a specialized technique to a broadly used methodology. Our efforts in 
this direction have resulted in the writing of an article for publication in the IEEE 
Spectrum [BDG95]: see section 3. 
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Another aspect of research related to developing the "wavelets approach" is the 
design of S+WAVELETS toolkit. The design of the toolkit is closely linked to our 
efforts to develop a coherent framework for wavelet analysis. The design of the 
toolkit is discussed in the technical report [BG95b]. The toolkit design and the 
corresponding technical report were partially supported by this contract. 

We will continue our research in this area, both in regards to writing new papers 
and developing software promoting the use and application of wavelets. 

2.4.1    S+WAVELETS Toolkit 

S+WAVELETS is an object-oriented toolkit for wavelet analysis of time series and 
images [BG94]. It is the only commercial toolkit for wavelet analysis incorporated 
into a high-level interactive language such as S-PLUS. A high-level overview of the 
toolkit is given in figures 14 and 15. 

The primary objective of the S+WAVELETS toolkit is to provide a mature com- 
mercial wavelet analysis product to the engineering and scientific research com- 
munity. The commercial software for S+WAVELETS is being developed under the 
support of NASA Phase II SBIR Contract No. NAS13-587. The S+WAVELETS 

toolkit provides important support for our research program with ONR: 

• It provides an environment in which we can rapidly prototype and test new 
wavelet based methods which we develop in our ONR research. This includes 
not only testing methods to determine performance on artificial or real test 
data sets, but also evaluating the practical implementations on real data sets 
of interest to the Navy. 

• The existence of our NASA SBIR funded S+WAVELETS commercial software 
development work means that we can provide China Lake (Gary Hewer and 
colleagues) with specialized software for wavelet analysis. 

We will continue to develop software based on the toolkit for use in our research 
and by Navy researchers at China Lake. In particular, we will develop software 
for efficient wavelet processing of signal and image arrays and non-decimated 2-D 
wavelet transforms. 

2.5    DIMENSION REDUCTION 

Since wavelets are very effective at compacting energy, wavelets are good tools for 
dimension reduction in problems involving very large data sets. The dimension 
reduction property of wavelets is important for applications such as image compres- 
sion, factor analysis, and numerical analysis: see chapter 11 of [Wic94]. 

We are investigating the use of wavelets as a dimension reduction tool for the 
problem of classification of transient acoustic signals (see below). In future research, 
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we may also look at use of dimension reduction as a means to apply other statistical 
techniques to very large data sets. 

2.5.1    Algorithms for Classification 

Following the work by Saito and Coifman [SC94], we illustrate the basic ideas of 
using wavelets to reduce the dimension of the problem of classifying transient acous- 
tic signals. We excerpt three classes of signals: whale clicks, snapping shrimp and 
background noise. Figure 12 displays three samples of length 2048 from the three 
classes. The wavelet classification scheme is based on reducing the signals of di- 
mension 2048 to vectors of length 6, and building a classification tree based on the 
length 6 vectors. Figure 13 shows the resulting classification tree. 

Specifically, this tree was built as follows: 

[1] 25 samples from each class are drawn to form a training data set. 

[2] For each sample, a wavelet packet table is computed and then an energy map 
is obtained by squaring the wavelet packet table and rescaling by the total 
energy of the signal. 

[3] The energy maps from each class are then combined to form a single energy 
map for the class. 

[4] Distances between the energy maps (totally 3 in this example) are computed 
and combined to a single distance measure. An optimal basis which maximizes 
the distance is derived. The optimal basis in this example consists of crystals: 
w4-0, w4-l, w4-2, w4.3, w2.1, wl.l. Li distance is used in this example, 
other discrimination measures include relative entropy and general Lp distance, 
[SC94]. 

[5] The training samples are transformed to the optimal basis and total energy 
for each crystal is accumulated. 

[6] A classification tree is grown based on the accumulated energy vectors (of 
length 6 in this example) and is displayed in Figure 13. 

25Q samples are drawn from each class and classified by the classification tree (apply 
step [5] above). The misclassification rate is 13.33%. 

In future research, we will investigate some of the following improvements 

[1] Shrink the energy maps to eliminate ambient noise and enhance features. 

[2] Time-invariant discriminant measures, such as rank related (e.g. Kruskal- 
Wallis [BD77]) statistics for comparing the component-wise distributions of 
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the transform coefficients, should be used for time-invariant signals (like whale 
clicks). Since these discrimination measures may not be additive, new optimal 
basis selection algorithms need to be developed. 

[3] For a given optimal transform, an equally challenge issue is how to compress 
the transformed coefficients. For time-variant signals, taking certain number 
of top coefficients, as suggested by Saito and Coifman, is a straight forward 
solution. However, when signals are time-invariant, this is not be the case: 
a transient may occur at any time and therefore the coefficients associated 
with the transient may occur at any time. In above example, we have used 
the accumulated energy. There are other options we can explore, such as top 
frequencies, autocorrelations and moments. 

2.6    ALGORITHMS FOR WAVELET ANALYSIS 

To support our research for analysis of Navy data, we have spent some effort in 
development of fundamental algorithms for wavelet analysis. This work has involved 
two separate projects: 

• Investigation in the fundamental properties of certain biorthogonal wavelet 
functions. 

• Development of algorithms to handle signals and images of arbitrary dimen- 
sions with a variety of boundary conditions. 

This work is described in more detail below. 

2.6.1    Fundamental Properties of Biorthogonal Wavelets 

In development of the S+WAVELETS toolkit, we discovered a problem in graphing 
certain biorthogonal wavelets; namely, the wavelets in Tables 8.2 and 8.3 of the book 
by Daubechies [Dau92] with (N, N) = (2,2), (3,1), (3,3), and (5,5). In the toolkit, 
these are referred to as wavelets bs2.2, bs3.1, bs3.3, and vs3. It turns out that 
these wavelets are infinite at all dyadics! This fact may have important implications 
for analysis using these wavelets, since it implies a certain underlying instability. 

We were naturally led to the question: if the wavelets are infinite at all dyadics, 
how do we graph the wavelets to get an understanding of their shape? The usual 
constructions for evaluating wavelet functions, described by Strang [Str89], do not 
apply. 

In work partially supported by this contract, we developed an approach for 
graphing such wavelets. This approach formulates an eigenvalue equation based 
on the dilation equation evaluated at non-dyadic points. This work is described 
in a paper published in "Recent Advances in Approximation Theory, Wavelets and 
Applications" [RBG94]. 
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2.6.2    Algorithms for Finite Signals 

A very important problem in wavelet analysis of signals and images is the ability to 
handle arbitrary signal/image samples sizes with a variety of boundary conditions. 
In on-going research, we are developing a suite of algorithms to address this problem. 

Most published research in wavelet analysis is based on signals and images which 
are of length/dimension 2J. Unfortunately, particularly for images, we do not always 
have the luxury to restrict our sample size in that manner. Also, in wavelet analysis, 
the treatment of the boundaries is very important. For computational simplicity, 
it is often assumed the image or signal is periodic. This can lead, however, to 
very serious artifacts which cause problems in both statistical and data compression 
applications. 

In a technical report, partially supported by this contract, we describe a suite 
of algorithms for addressing these issues [BG95a]. In work in progress, we are 
extending this work, further improving these algorithms and developing a conceptual 
framework for understanding finite wavelet operators [BGR95]: see section 3. 

3    PAPERS AND TALKS 

3.1    Published Papers 

1. Smoothing and Robust Wavelet Analysis. Andrew G. Bruce, David L. 
Donoho, Hong-Ye Gao, and R. Douglas Martin. In Proceedings in Computa- 
tional Statistics (invited paper), Vienna, Austria, August, 1994. 

In a series of papers, Donoho and Johnstone develop a powerful theory based 
on wavelets for extracting non-smooth signals from noisy data. Several non- 
linear smoothing algorithms are presented which provide high performance 
for removing Gaussian noise from a wide range of spatially inhomogeneous 
signals. However, like other methods based on the linear wavelet transform, 
these algorithms are very sensitive to certain types of non-Gaussian noise, such 
as outliers. In this paper, we develop outlier resistant wavelet transforms. 
In these transforms, outliers and outlier patches are localized to just a few 
scales. By using the outlier resistant wavelet transforms, we improve upon the 
Donoho and Johnstone nonlinear signal extraction methods. The outlier resis- 
tant wavelet algorithms are included with the S+WAVELETS object-oriented 
toolkit for wavelet analysis. 

2. Nonlinear and Robust Wavelet Analysis. Andrew Bruce, David L. 
Donoho, Hong-Ye Gao, and R. Douglas Martin. In SPIE Proceedings, Wavelet 
Applications, Orlando, Florida, April, 1994. 

See above for abstract. 
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3. Non-smooth Wavelets: Graphing Functions Unbounded on Every 
Interval. David Ragozin, Andrew Bruce, and Hong-Ye Gao. In Recent Ad- 
vances in Approximation Theory, Wavelets and Applications, Kluwer, 1994. 

Several wavelets from well known biorthogonal families are shown to be un- 
bounded on every interval. One, in fact, is shown to be infinite at each dyadic 
rational. Not withstanding these facts, we show how to compute exact values 
for these wavelets at many points and thus achieve exact pictures for these 
functions. 

3.2    Papers Accepted for Publication 

1. Ideal Denoising in an Orthonormal Basis Selected from a Library 
of Bases David L. Donoho and Iain M. Johnstone. To appear in Comptes 
Rendus de l'Academie de Science Paris. 

Suppose we have observations ?/,• = st- + Z{, i = 1, ..., n, where (s,) is signal 
and (z{) is i.i.d. Gaussian white noise. Suppose we have avilable a library C of 
orthogonal bases, such as the Wavelet Packet bases or the Cosine Packet bases 
of Coifman and Meyer. We wish to select, adpatively based on the noisy data 
(?/j), a basis in which best to recover the signal ("de-noising"). Let Mn be the 
total number of distinct vectors occurring among all bases in the library and 
let tn = J2\og(Mn). (For wavelet packets, Mn = relog2(ra).) 

Let y[B] denote the original data y transformed into the Basis B. Choose 
A > 8 and set Lambdan = (A • (1 + tn))2. Define the entropy functional 

i 

Let B be the best orthogonal basis according to this entropy: 

B = &vg rain £x(y,B). 

Define the hard-threshold nonlinearity r)t(y) = yl{\y\>t}- hi the empirical best 
basis, apply hard-thresholding with threshold t = y/K^,: 

Theorem: With probability exceeding 7rn = 1 — e/Mn, 

\\s* - s\\l < (1 - 8/A)"1 • A„ • mmE\\sB - s I2 

Bee    " "       ,l2' 

Here the minimum is over all ideal procedures working in all vases of the 
library, i.e. in basis B, s& is just ?/i[ß]l{|Si[ß]>1}. 
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In short, the basis-adaptive estimator achieves a loss within a logarithmic 
factor of all the ideal risk which would be achievable if one had available an 
oracle which would supply perfect information about the ideal basis in which 
to de-noise, and also about which coordinates were large or small. 

The result extends in obvious ways to more general orthogonal basis libraries, 
basically to any libraries constructed from an at-most polynomially-growing 
number of coefficient functionals. Parallel results can be developed for closely 
related entropies. 

2. On Minimum Entropy Segmentation.  David L. Donoho.  To appear in 
Wavelet Analysis and Its Applications, edited by Charles Chui. 

A segmented multiresolution analyses of [0,1] is described. Such multiresolu- 
tion analyses lead to segmented wavelet bases which are adapted to disconti- 
nuities, cusps, etc., at a given location r 6 [0,1]. The approach emphasizes 
the idea of average-interpolation - synthesizing a smooth function on the line 
having prescribed boxcar averages. This particular approach leads to methods 
with subpixel resolution and to wavelet transforms with the advantage that, 
for a signal of length n, all n pixel-level segmented wavelet transforms can be 
computed simultaneously in a total time and space which are both 0(n log(n)). 

The search for a segmented wavelet basis is considered which, among all such 
segmented bases, minimizes the "entropy" of the resulting coefficients. Fast 
access to all segmentations enables fast search for a best segmentation. 

When the "entropy" is Stein's Unbiased Risk Estimate, one obtains a new 
method of edge-preserving de-noising. When the "entropy" is the £2-energy, 
one obtains a new multi-resolution edge detector, which works not only for 
step discontinuities but also for cusp and higher-order discontinuities, and in 
a near-optimal fashion in the presence of noise. 

An iterative approach is also described, Segmentation Pursuit, for identifying 
edges by the fast segmentation algorithm and removing them from the data. 

3.3    Papers Accepted Pending Review 

1. Wavelet Analysis Tools Become Widely Available. Andrew G. Bruce, 
David L. Donoho, and Hong-Ye Gao. Under review at the IEEE Spectrum. 

This is an introductory article intended to promote the use and application of 
wavelets and wavelet software. The article gives a non-mathematical review 
of wavelet analysis, complete with color graphics and informative sidebars. 
Several applications of wavelets are given, including data compression, noise 
removal, and development of fast algorithms.    The discussion includes the 
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latest developments in wavelets, including time-frequency decompositions such 
as wavelet packets and cosine packets. 

The main focus of the article is to give a description of the "wavelets toolkit", 
which is the collection of software tools needed to perform a wavelet analysis. 
A wide range of commercial and public domain software is reviewed. The 
advantages and disadvantages of different wavelet computing environments 
are discussed. 

2. Choice of Thresholds for Wavelet Shrinkage Estimate of the Spec- 
trum. Hong-Ye Gao. Under review at the Journal of Time Series Analysis. 

We study the problem of estimating the log spectrum of a stationary Gaussian 
time series by thresholding the empirical wavelet coefficients. We propose the 
use of thresholds t^n depending on sample size n, wavelet basis iß and resolution 
level j. At fine resolution levels (,;' = 1,2,...), we propose 

tjtn = a>j\ogn, 

where {ctj} are level-dependent constants and at coarse levels (j >• 1) 

The purpose of this thresholding level is to make the reconstructed log-spectrum 
as nearly noise-free as possible.   In addition to being pleasant from a visual 
point of view, the noise-free character leads to attractive theoretical properties 
over a wide range of smoothness assumptions.   Previous proposals set much 
smaller thresholds and did not enjoy these properties. 

3.4    Technical Reports 

1. Wavelet and Isotonic Regression. Hong-Ye Gao. 

Consider the model: 

Vi = f(U) + Zi 

where / is a decreasing function and {z;} are assumed to be a stationary 
Gaussian process with mean zero and variance a1. We propose a simple thresh- 
olding procedure based on the fact that the wavelet coefficients for /, under 
Haar basis, are non-negative. We show that our estimator is competitive with 
the Grenander estimator both theoretically and numerically (in the sense of 
mean-square-error). 

To go beyond Haar wavelets, new spline wavelet refinement operators are de- 
veloped. These operators preserve the monotonicity of the refinement. 
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2. S+WAVELETS: Algorithms and Technical Details.   Andrew Bruce, 
Hong-Ye Gao, and David Ragozin. 

A complete description is given for the algorithms in S+WAVELETS software 
toolkit for wavelet analysis. These algorithms include wavelet transforms, 
wavelet packet transforms, cosine packet transforms, and non-decimated wavelet 
transforms. Implementations for the transforms and their inverses are given 
for a variety of boundary treatment rules, including periodic, reflection, in- 
terval wavelets (Cohen et al. [CDV93]), and zero/polynomial extension. In 
addition, modifications to the standard algorithms are given to handle signals 
or images with dimensions not divisible by a power of two. 

3.5 Talks and Presentations 

1. SPIE Meetings. Denoising and Robust Non-Linear Wavelet Analysis, April, 
1994, Orlando, FL. 

2. CompStat Meeting, Smoothing and Robust Wavelet Analysis, August, 1994, 
Vienna, Austria. 

3. IMS Talks.   An Object-Oriented Toolkit for Wavelet Analysis, April, 1994, 
Cleveland, OH. 

3.6 Papers In Preperation 

1. Wavelet Packet Transforms for Finite Signals. Andrew Bruce, Hong-Ye 
Gao, and David Ragozin. 

As originally developed by [Dau88] the discrete wavelet transform is defined 
on the entire real line. To apply the wavelet and wavelet packet transforms to 
a finite signal, several approaches have been pursued: 

(a) An ad hoc rule is used for applying the wavelet filters at the boundaries of 
the signal, typically by recursively extending the signal at each iteration 
in the wavelet decomposition. 

(b) The signal is extended infinitely according to some boundary rule (e.g., 
periodic extension) and sufficient coefficients are retained to reproduce 
the transform (see, for example, [MT92, BF92]). 

(c) A new wavelet transform is formally defined on compact sets (e.g., [CDV93] 
define an orthogonal wavelet basis on compact intervals). 

A unified framework is developed for these approaches. The methods are com- 
pared, both theoretically and empirically with emphasis on their implications 
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for data analysis and statistical estimation. Practical algorithms are given for 
software implementation. 

2. A Fast,  Robust, Nonlinear Wavelet Transform.   Andrew Bruce and 
David L. Donoho. 

A triadic nonlinear refinement scheme is described based on solving the fol- 
lowing problem: given the median value of a function on blocks of size 3~J, 
impute medians to all finer-scale blocks of size 3-J-1 by fitting local polynomi- 
als to the neighboring block medians and calculating the block medians of the 
polynomials one scale finer. This nonlinear refinement scheme is practical for 
linear and quadratic polynomials. It is a nonlinear cousin of Deslauriers-Dubuc 
interpolation and of Average-Interpolation. It is reproduces polynomials up 
to the degree of the fit. 

This refinement scheme leads to nonlinear multiresolution analyses. The wavelet 
coefficient functionals are possibly nonlinear combinations of a finitely many 
block medians at the same scale; a fast nonlinear algorithm to compute all 
block medians in 0(nlog(n)) time can be made by a simple merging of sorted 
lists. Using this, one gets a fast nonlinear wavelet transform. 

An advantage of the transform is its robustness against outliers and impulsive 
noise, while preserving high degree approximation quality. 

3. Spectral Density Estimation by Wavelet Shrinkage. Hong-Ye Gao. 

We study the problem of estimating the spectral density of a stationary Gaus- 
sian time series. We use an orthogonal wavelet system whose members are 
periodic functions and have a finite number of non-zero Fourier coefficients - 
periodized Meyer wavelets. We apply shrinkage rules to the empirical wavelet 
coefficients. We show that estimates based on thresholds t^n = Xj log n for 
certain Xj, with n the sample size, have near-optimal Li convergence rates, 
over any Besov class in a wide range. In some cases, which includes the Bump 
Algebra, wavelet shrinkage procedures significantly outperform classical linear 
procedures, such as window methods and AR approximation methods. 

4. S+WAVELETS: Applications I - Wavelet De-Noising. Andrew Bruce 
,    and Hong-Ye Gao. 

This is the first in a series of papers illustrating applications of wavelets using 
S-f-WAVELETS. This paper focuses on the removal of noise in a variety of 
applications. Some of the problems examined include noise removal from a 
noisy NMR signal, signal extraction from radar glint noise, variance estimate 
for wavelet de-noising, image enhancement, probability and spectral density 
estimation, enhancement of noisy speech data, and isotonic regression. 
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5. S+WAVELETS: Applications II - Data Compression. Andrew Bruce 
and Hong-Ye Gao. 

This is the second in a series of papers illustrating applications of wavelets 
using S+WAVELETS. Several applications of wavelets to problems in data 
compression are presented. Some of the problems include compression of seis- 
mic signals, acoustic signals, digital MR images, and digital fingerprint images. 

6. S+WAVELETS: Applications III - Signal Processing. Andrew Bruce 
and Hong-Ye Gao. 

This is the third in a series of papers illustrating applications of wavelets 
using S-f WAVELETS. A variety of signal processing problems is examined, 
including time-frequency analysis of acoustic signals, singularity detection and 
estimation, and fast algorithms for signal classification. 

4    FUTURE RESEARCH PLANS 

Our future research plans will continue the six research areas as discussed in sec- 
tion 2. We will also complete the papers in preparation discussed in section 3. In 
addition, as time permits, we will pursue some new ideas in these areas, including 

Fast L\/M-estimators for wavelets: In the first year of our research, we found that 
using more robust methods for fitting wavelets produced valuable decomposi- 
tions for many types of signals and images. However, these methods were of 
limited value since they required extensive computational effort. Using well 
known stochastic approximation formula, we propose to develop approximate 
methods for fast computation of Zq/M-estimators for wavelet decompositions. 

Robust time series filters. The ARMA interpretation of the wavelet filters will be 
exploited to yield a robust wavelet decomposition using the approximate con- 
dition mean (ACM) smoothers developed by C. J. Masreliez [Mas75] and R. 
D. Martin [Mar79, MF93]. 

Robust wavelets in higher dimensions. The robust algorithms developed for one-dimensional 
signals will be extended to higher-dimensional data, following the work of 
[DJL92, Ric93].   One and two dimensional non-decimated algorithms for ro- 
bust wavelet analysis will also be explored. 

Wavelet coefficients for fractional Brownian motion. There has been considerable 
activity examining the statistical properties and utility of wavelet coefficients 
for fractional Brownian motion. In particular, there is work on texture analysis 
[TD90], estimation and analysis of fractional Brownian motion [DT91, Fla92], 
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extracting fractal signals from noisy measurements [W092], correlation struc- 
ture of wavelet coefficients for fractional Brownian motion [TK92, DM94], 
Karhunen-Loeve like expansions for 1// processes [Wor92], and analysis of 
long-memory processes [PG94]. These results give some promise for further 
statistical results. 

Simulation, bootstrapping, and modeling of non-Gaussian processes. Simulation of non- 
Gaussian processes has many practical uses in Navy applications. The use 
of wavelets gives hope of providing a convenient method for simulating non- 
Gaussian random processes. One would compute the wavelet coefficients for 
an observed sample of a non-Gaussian process, and then generate simulation 
sample paths by appropriate random sampling of the wavelet coefficients and 
subsequent expansion in terms of wavelets. Various methods of random sam- 
pling need to be studied. Then one needs to establish that the sample paths 
generated converge in a suitable probabilistic sense to the probability mea- 
sure for the observed sample path used to calculate the wavelet coefficients as 
the sample size tends to infinity. Work in this area could lead to an effective 
bootstrap method for carrying out inference for non-Gaussian processes. This 
will be applied to improve the variance estimation methods for WaveShrink 
estimators. 
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Figure 1: WaveShrink with non-decimated wavelets. Top: the noisy jumpsine signal. 
Bottom (solid line): smooth produced by wavelet shrinkage using the orthogonal 
DWT. Bottom (dashed line): smooth produced by wavelet shrinkage using the 
nori-decimated DWT. The haar wavelet is used in this example. 
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1880 

Figure 2: Approximate confidence band for WaveShrink. Top: the annual Nile River 
flow at Aswan from 1875 to 1970. Middle: WaveShrink using the Haar wavelet with 
an approximate 95% confidence band. Bottom: WaveShrink using the bsl. 3 wavelet 
with an approximate 95% confidence band. The confidence interval clearly shows a 
significant drop around the time of the building of the Aswan dam in 1899-1902. 
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Figure 3: First row: the doppler signal (left) and the noisy doppler signal (right). Second 
row: the WaveShrink estimates using the "universal" threshold (left) and the "minimax" 
threshold (right). Third row: the mean-square error (MSE) of the WaveShrink estimate 
of every other sample value based on the remaining half of the data for a range of thresh- 
olds from 1 to 3 (left) and the cross-validation WaveShrink estimate which achieves the 
minimum MSE (right). Fourth row: MSE between the WaveShrink estimate and the true 
doppler signal using thresholds ranging from 1 to 3 (left) and the WaveShrink estimate us- 
ing the threshold which achieves the minimum (right). Cross validation consistenly leads 
to lower MSE than the "universal" and "minimax" thresholds for this example. 
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Figure 4: Comparison of wavelet estimate and Grenander estimate for monotone 
signal. Top left: a decreasing curve with two discontinuities, Top right: the same 
curve plus Gaussian white noise, Bottom left: the Grenander estimate with mean- 
square error, Bottom right: the wavelet estimate with mean-square error. The 
wavelet estimate has lower mean square error and does a better job of preserving 
the jumps. 
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Figure 5:   A simulated AR series which has sharp peaks in its spectral density 
function. 
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Figure 6: The true spectrum for the simulated AR series of figure 5 (top), the raw 
log-periodogram (second), the smoothed log-periodogram using a triangular spectral 
window (third), and the WaveShrink estimate (bottom). 
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Figure 7:   The bumps signal (top), the bumps signal plus Gaussian white noise 
(middle), and an estimated of the bumps signal obtained from WaveShrink (bottom). 
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Figure 8: Visualizing the WaveShrink fit for the bumps signal. Top left: the de- 
composition of the data into signal plus noise. Top right: Boxplots of the DWT 
coefficients for the original data with the WaveShrink thresholds superimposed as 
horizontal lines. Any wavelet coefficient lying inside the lines is set to zero. Bottom 
left: The DWT of the signal. Bottom right: A barplot showing the decomposition 
of the energy of the data into the energy attributable to signal and residual energy. 
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Figure 9: Four views of the residuals from the WaveShrink estimate of the bumps 
signal. Top left: the DWT of the residual component. Top right: the autocorrelation 
function (acf) of the residual component. Bottom left: the quantile-quantile plot of 
the, residual component versus the quantiles of a standard normal. Bottom right: a 
histogram and density estimate of the residuals. 
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Figure 10: The robust smoother algorithm produces a pyramid decomposition with 
an extra component: the robust residual R{£). For each multiresolution level, the 
low-pass coefficients S(£) are first cleaned using a robust smoother cleaner, denoted 
by sc in the figure. The residuals are saved in the R(£). The usual wavelet filters 
are then applied to the cleaned S(£) to obtain S(£ + 1) and D(l + 1). 

Figure 11: (a) Radar glint noise data in degrees, and (b) denoising by linear shrinkage 
of wavelets (dashed line) compared with denoising by WaveShrink combined with 
robust smoother-cleaner wavelets (solid line). 
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Figure 12: Three acoustic signals: whale clicks (top), shrimp clicks (middle), and 
background noise (bottom). 
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Figure 13: A classification tree for the acoustic signals derived from a wavelet packet 
energy map. 

34 



Signal 

Image 

S+Wavelets Objects 

Wavelet 
Transform 

Muttiresolution 
Decomposition 

Wavelet 
Packet 

Tranform 

Cosine 
Packet 

Tranform 

Cther Cbjects: 

- ffcn-dedBBCad wawelec cransfnrm 
- SSsfal deanpasiticna 

■ Wauelec fijrrlro cbjags 

«2 

Manipluata 
- Apply math operators 
- Modify object components 
- Filter and quantize coefficients 

tit 
Visualize 
- Contour and image plots 
- Boxplots, histograms... 
• Transform domain plots 
- Time-frequency displays 

ft   * 
Synthesize 
- De-noising 
- Encoding/Decoding 
- Fast equation solvers 

Ü * 
Statistical Analysis 
- Tree network classification 
- Linear discriminat analysis 
- Non-parametric estimation 

Figure 14: A wavelet analysis starts with the transformation of a signal or image 
object into a wavelet object. A wavelet representation is not a single transforma- 
tion, but involves a wide range of objects. The toolkit provides a rich infrastructure 
for interacting with the data and wavelet objects. The user can visualize, manip- 
ulate and synthesize wavelet objects with built-in functions and operators. Be- 
cause S+WAVELETS is embedded in S-PLUS, users can also apply a wide collection 
of statistical analysis tools, such as tree network classification, linear discriminant 
analysis, or non-linear additive models. 
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Figure 15: An overview of the object-oriented design of S+WAVELETS. The hori- 
zontal boxes group the objects by type: 1-D transforms, 2-D transforms, etc.. The 
objects are also categorized as primitive objects (middle vertical panel), objects 
specialized for wavelet and wavelet packet analysis (left vertical panel), and objects 
specialized for cosine packet analysis (right vertical panel). The lines indicate the 
inheritance hierarchy. 
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